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Abstract
The structures of molten MgCl2 and ZnCl2 have been modelled using the
reverse Monte Carlo method, based on neutron and x-ray diffraction data. We
show that, although the structures are similar in terms of two-body correlations
(e.g. partial radial distribution functions, average coordination numbers), there
are important differences in the higher order correlations (e.g. bond angle and
coordination number distributions). We have also analysed the models using
bond-constraint counting. All of the results are consistent with the fact that
ZnCl2 has a high viscosity and is a glass former (intermediate between strong
and fragile), whereas MgCl2 is not a glass former, and with their different crystal
structures.

1. Introduction

On the basis of most of the microscopic information that is available one would expect molten
ZnCl2 and MgCl2 to be very similar. The number densities are 0.03 and 0.0317 Å−3, and the
ionic radii of the doubly charged cations are 0.88 and 0.86 Å, respectively. The partial structure
factors (psf), Aαβ(Q), and partial radial distribution functions (prdf), gαβ(r), determined by
neutron diffraction studies using isotopic (Cl) substitution [1, 2] are also very similar. However
molten ZnCl2 is a highly viscous liquid that easily forms a glass. Its crystalline phases are
characterized by the tetrahedral coordination of four Cl− around Zn2+. MgCl2, on the other
hand, has a relatively low viscosity, does not form a glass, and crystallizes in the layered CdCl2
structure with octahedral coordination.

The anomalous properties of molten ZnCl2 have led to a number of diffraction and
modelling/simulation studies [1, 3–5]. MgCl2 has been relatively ignored [2, 3]. In the present
paper we make a comparison of the two liquids; this is an extension of an earlier study [3].
We show that, despite their apparent similarity, the diffraction data do indeed reveal a subtle
but important difference between the two liquids that can be correlated with their physical
properties and crystal structures. We also demonstrate that the reverse Monte Carlo (RMC)
method of structural modelling is capable of revealing such a subtlety.
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2. RMC modelling and results

The RMC modelling method and its application to studies of molten salts, including MgCl2 and
ZnCl2, has been described elsewhere [3, 6]. Here we will only give relevant details. Models
consisted of 1200 cations and 2400 anions in a cube of side 48.42 Å for MgCl2 and 49.32 Å for
ZnCl2, with periodic boundary conditions. Atomic closest approach constraints were applied:
Mg–Mg 3.3 Å, Mg–Cl 1.8 Å, Zn–Zn 3.5 Å, Zn–Cl 1.8 Å and Cl–Cl 2.7 Å. The data that
were fitted were the total structure factors for samples with different isotopic Cl compositions
as measured using neutron diffraction for ZnCl2 [1] and MgCl2 [2], and x-ray diffraction for
ZnCl2 [4].

The total structure factor (tsf), F(Q), measured in an experiment for a binary system is a
linear combination of the three partial structure factors (psf), Aαβ(Q),

F(Q) =
N∑

α=1

N∑
β=1

γαβ(Q)(Aαβ(Q) − 1) (1)

which are related to the partial radial distribution functions (prdf), gαβ , by Fourier transform

gαβ(r) − 1 = 1

(2π)3ρ

∫
4πQ2(Aαβ(Q) − 1)

sin Qr

Qr
dQ (2)

where γαβ are coefficients (see table 1), which is Q dependent an x-ray diffraction and is
constant for neutron diffraction, and ρ is the atomic number density.

Table 1. Weighting coefficients of partial structure factors corresponding to the total structure
factors shown in figure 1.

Radiation Sample γ++ γ+− γ−−

ZnCl2

Neutron F37 0.0359 0.0837 0.0487
Neutron FN 0.0359 0.2255 0.3540
Neutron F35 0.0359 0.2942 0.6028
X-ray (Q = 0) FX 0.21 0.5 0.29

MgCl2

Neutron F37 0.0321 0.1085 0.0916
Neutron FM 0.0321 0.1937 0.2923
Neutron FN 0.0321 0.2289 0.4079
Neutron F35 0.0321 0.2695 0.5655

The following RMC models were produced.

(A) Starting from a random arrangement of ions and modelling neutron diffraction data with
no constraints on coordination.

(B) A model for ZnCl2 starting from the MgCl2 model produced in (A), and one for MgCl2
starting from the ZnCl2 model produced in (A), modelling neutron diffraction data with
no constraints on coordination.

(C) As (A) but with a constraint to maximize the fraction of fourfold cation–anion coordination
up to 3.0 Å.

(D) As (B) but with a constraint to maximize the fraction of fourfold cation–anion coordination
up to 3.0 Å.

(E) As (D) for ZnCl2 but also fitting to x-ray diffraction data.
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Figure 1. Total structure factors, F(Q), for neutron diffraction from three samples of molten ZnCl2
with different isotopic chlorine compositions (see table 1 for details) and for x-ray diffraction.
Points; experimental data [1, 4]. Curves, RMC fit (model (E)).

The experimental data are shown in figures 1 and 2 together with the RMC fits for model (D)
for MgCl2 and model (E) for ZnCl2. The quality of fit is the same for all the models. Note that
the neutron diffraction data were measured some years ago and are not of the high statistical
accuracy that might now be expected. However, we estimate that the systematic errors are
reasonably low, and this is usually more important. The x-ray diffraction data for ZnCl2 show
a deviation at high Q that might be expected due to, e.g., an incorrect background subtraction
(this being more important at high Q due to the fall off of the form factor in this region). A
similar deviation is evident in the modelling study of Bassen et al [5]. We have therefore not
used data above 10 Å−1. The inclusion of x-ray diffraction data does not make a significant
difference to the model for ZnCl2. As can be seen from table 1, the relative weighting factors
for the psf’s are similar to those for neutron diffraction from Zn37Cl2, so little extra information
is provided by the additional data. The fitting merely then serves to confirm that the neutron
and x-ray data are consistent.

The psf’s and prdf’s are shown in figures 3 and 4, respectively. These are very similar for
ZnCl2 and MgCl2, as noted previously, so the first expectation is that there is no significant
difference between the models. The first diffraction peak (FDP) at∼1 Å−1 occurs dominantly in
the cation–cation psf, consistent with the fact that it is strongest for tsf’s with a greater weighting
of the relevant coefficient. This FDP indicates some intermediate range ordering (IRO) of the
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Figure 2. Total structure factors, F(Q), for neutron diffraction from four samples of molten MgCl2
with different isotopic chlorine compositions (see table 1 for details). Points, experimental data
[2]. Curves, RMC fit (model (D)).

cations. The cation–cation prdf’s have a first peak at the same distance as the anion–anion
prdf’s, ∼3.6 Å, which is unexpected because the cation is doubly charged. There is an apparent
small split in the first peak of the cation–cation prdf for both ZnCl2 and MgCl2. However, we
have no reason to believe that this is ‘real’—probably it is an artefact caused by the data quality.
Typically such artefacts occur in the partial for which there is least information in the data.

In models (A) and (B) the dominant cation–anion coordination is fourfold; hence we have
also produced models (C), (D) and (E) with constrained fourfold coordination. This has been
achieved to a level of 97% for ZnCl2 and 99% for MgCl2.

In figure 5 we show bond angle correlation functions, Pαβγ (cos θ), for various triplets of
neighbours. Ions are defined as neighbours if their separation is less than 5.0 Å (++), 3.0 Å
(+−) or 4.8 Å (−−), the distances being taken from the approximate positions of the first
minima in the corresponding gαβ(r). The results for P+++ and P−−− are very similar. The
largest differences occur for P+−+. MgCl2 has a very broad distribution, peaking at about
90◦. ZnCl2 has a sharper distribution which peaks close to the inter-tetrahedral angle, 109◦.
Given that both materials have fourfold coordination this leads to the conclusion that there is a
similar basic anion structure, but in ZnCl2 Zn2+ favour the occupation of tetrahedral interstices,
whereas in MgCl2 Mg2+ favour the occupation of interstices where the co-ordination is more
square planar. The IRO occurs because of correlations between the cation sites.
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Figure 3. Partial structure factors, Aαβ(Q), calculated from RMC models for molten ZnCl2 (full
curves, model (E)) and MgCl2 (broken curves, model (D)).

Figure 6 shows the coordination number distributions, Cαβ(N), for model (D) for MgCl2
and model (E) for ZnCl2. Because of the constraint applied C+− (i.e. the number of anions
which are neighbours of a given cation) is four for almost every cation. However, there is a
significant difference between the anion–cation coordination number distributions. Although
the average value C−+ = C+−/2 ≈ 2 for both MgCl2 and ZnCl2, ZnCl2 has significantly more
twofold coordinated anions (78%) than MgCl2 (45%). C++(N) and C−−(N) are also more
sharply peaked for ZnCl2 than for MgCl2.

3. Discussion

Bassen et al [5] have recently reported a RMC and MC modelling study of molten ZnCl2.
Their conclusions as to the basic structure are no different from ours. They also conclude that
‘the RMC method should be applied with much care when used for the structural modelling of
molten salts’. We would entirely agree with this statement. However Bassen et al are implying
that the RMC results are in some sense unreliable since they do not reproduce the high definition
of tetrahedral units that the MC simulations do. We would point out the following. First of
all Bassen et al have modelled only x-ray diffraction data, and over a very limited Q range
(0.5–7 Å−1). In fact above 4 Å−1 the agreement with the data can only be considered as
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Figure 4. Partial radial distribution functions, gαβ(r), calculated from RMC models for molten
ZnCl2 (full curves, model (E)) and MgCl2 (broken curves, model (D)).

poor. The information supplied to RMC is therefore extremely limited. Even if one would
expect that the RMC model would be intrinsically more disordered than the real system (this
has been discussed many times elsewhere, e.g. [6]), the conclusion should be that RMC has
done a remarkable job to produce a structure that is in such good general agreement with
MC on the basis of the small amount of information supplied. It might also be noted that
in the MC models some of the expectations are ‘built in’ through the potential—hence it is
hardly surprising that the results agree with the expectations. RMC methods should indeed be
applied with care, and one point of care is not to have an unrealistic expectation on the basis
of inadequate information.

The models produced here confirm that the cation–cation nearest-neighbour distance is
similar to the corresponding anion–anion distance, despite the higher cation charge. Wilson
and Madden [7] have shown that this can arise in the following way. The small cation polarizes
the neighbouring anion(s). In certain atomic arrangements this polarization can produce an
additional attraction for a second cation, which may be considered as an effective reduction in
the cation–cation repulsion. Since there are fewer cations than anions, but the first neighbour
distance is the same, this implies that the cation density in some regions must be higher than in
others, i.e. the cations tend to cluster. This density fluctuation gives rise to the FDP in A++(Q).
The same behaviour is observed for both salts, so cation clustering has no direct relationship
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Figure 5. Bond-angle correlation functions, Pαβγ (cos θ), between nearest neighbours for molten
ZnCl2 (full curves, model (E)) and MgCl2 (broken curves, model (D)).

to the fact that MgCl2 has high mobility (low viscosity) and ZnCl2 has low mobility (high
viscosity). Indeed it might be noted that there is evidence of short cation–cation distances in
other salts where the cations are specifically associated with high mobility (fast ion conduction)
(e.g. [8–11]). In these cases the cation–cation distance is comparable with the cation–anion
distance, and has again been related to polarization of the anions [12].

The structures of molten ZnCl2 and MgCl2 can be considered as close-packed Cl−

networks with cations occupying a fraction of the interstices. The fourfold cation–anion
coordination and the positions of the peaks in P+−+ suggest that Zn2+ prefer to occupy relatively
regular tetrahedral interstices, while Mg2+ prefer to occupy interstices with a more octahedral
geometry with a pair of anion vacancies (square planar geometry is therefore one of these
possibilities). This seems consistent with the fact that ZnCl2 forms tetrahedrally coordinated
structures in the glass and crystal while MgCl2 forms a layer structure. It also seems consistent
with the lower viscosity of MgCl2.

This can be given a more quantitative basis using bond-constraint counting ideas (e.g.
[13, 14]). Ideally an N -fold coordinated atom has ns = N/2 bond stretching constraints and
nb = (2N − 3) bond-bending constraints. However, some constraints may be broken. For
example, in vitreous SiO2 (NSiO = 4, NOSi = 2) the bond-bending constraints for O atoms
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Figure 6. Coordination number distributions, Pαβ(N), of nearest neighbours for ZnCl2 (grey,
model (E)) and MgCl2 (hatched, model (D)).

are broken (the Si–O–Si bond is very flexible) giving an average number of constraints

nc = (NSiO/2) + 2 × (NOsi/2) + (2 × NSiO − 3)

3
= 3. (3)

Since the number of constraints equals the number of degrees of freedom the system is optimally
constrained and SiO2 is an excellent glass former. To analyse the models for ZnCl2 and MgCl2
we will consider only ‘ideally’ coordinated cations and anions, i.e. cations with fourfold
cation–anion coordination and anions with twofold anion–cation coordination. Anion centred
bond-bending constraints are broken (as in SiO2). Cation centred bond-bending constraints are
broken if Cl is not twofold coordinated. The number of constraints for ZnCl2 is then similar to
that for SiO2 (though the structures are not topologically equivalent—there is no ‘short’ Si–Si
distance)

nc = 0.97 × (4/2) + 0.78 × 2 × (2/2) + 0.78 × (2 × 4 − 3)

3
= 2.47. (4)

However for MgCl2 the number of twofold coordinated anions is much lower, giving

nc = 0.99 × (4/2) + 0.45 × 2 × (2/2) + 0.45 × (2 × 4 − 3)

3
= 1.71. (5)

If one includes all bonds for the bond-stretching constraints (i.e. not just the fourfold and
twofold coordinated) the numbers rise to 2.61 and 2.08, respectively. In either case the numbers



The structure of molten ZnCl2 and MgCl2 7221

suggest that ZnCl2 will be midway between a strong and fragile glass former and MgCl2 will
be extremely fragile (i.e. effectively not a glass former), as is in fact the case.

(a) (b)

Figure 7. Sections of RMC models (10 Å thick) for molten MgCl2 ((a), model (D)) and ZnCl2
((b), model (E)). Bonds are drawn between cation–anion pairs less than 3 Å apart where cations
have fourfold anion coordination and anions have twofold cation coordination.

It can be noted that normally bond-constraint calculations are made on the basis of ‘ideal’
or average coordination numbers which are determined on the basis of simple chemical ideas
and the composition of the material. However, this would predict similar properties for ZnCl2
and MgCl2. It is therefore necessary to account for the coordination number distribution. To
our knowledge this is the first time that such an idea has been applied. For relatively symmetric
coordination number distributions the bond-stretching constraints will be the same whether the
distribution or the average is used. It is less obvious how to deal with bond-bending constraints.
In order to be able to make some simple calculations we have had to make a slightly arbitrary
choice of which bond-stretching constraints to include. Whatever choice is made would still
lead to the conclusion that ZnCl2 is more ‘SiO2 like’, in the sense that it has the ‘perfect’
combination of fourfold cation–anion coordination and twofold anion–cation coordination to
a higher degree, and MgCl2 is less ‘SiO2 like’. It is therefore reasonable to conclude that one
might expect ZnCl2, on a purely structural basis, to be a better glass former. A fuller discussion
of how to apply bond-constraint calculations in such ‘non-ideal’ structures should be left to a
separate paper.

The difference between MgCl2 and ZnCl2 can also be shown visually. In figure 7 we show
sections from the models where bonds are drawn between neighbouring cation–anion pairs if
cations have fourfold anion coordination and anions have twofold cation coordination. It is
clear that the ZnCl2 bond network percolates, i.e. connects across the entire model, whereas
the MgCl2 network is fragmented.

It then remains to consider the origin of the differences between the two salts. As noted
earlier, the similarity in number density and ionic radii would lead to similar structures and
properties on the basis of a simple ionic potential. With the inclusion of ‘first order’ polarization
effects, as done by Wilson and Madden [7], one would still expect similarity since the anions
are identical and the polarization effect is to first-order dependent on the cation size and charge.
However, if one looks at the trends then for even smaller cation size the expected structure
becomes more similar to that for molten NiI2 [15], which is associated with a relatively high
mobility (NiI2 is a fast ion Ni2+ conductor at high temperature in the solid state). The trend
from Zn2+ to Mg2+ is therefore in the ‘right direction’. Madden [16] has suggested that higher
order polarization effects may play some role. We would also suggest that ZnCl2 is in fact
anomalous because it falls into a special ‘window’ where the cation size and polarization
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effects produce a bond network that has long-range connectivity, but is just to one side of a
percolation threshold. Only a small change in the bonding is required to place MgCl2 on the
other side of the threshold.

4. Conclusions

We have shown that in terms of two-body correlations, e.g. prdf’s, the structures of molten
MgCl2 and ZnCl2 are very similar. However they are not identical and the differences become
more visible when one considers higher order correlations, e.g. bond angle distributions and
bonding networks. We have then shown that there is a structural basis for the high viscosity
and good glass forming ability of molten ZnCl2, and why this is not the same for MgCl2.

These results occur entirely on the basis of the data, independently of the starting
configuration and the imposition of coordination constraints. It might be argued that, since the
data are not of the highest quality, these differences might be driven by residual errors. While
this cannot be discounted, it would be an extraordinary coincidence that the results produced
by such errors were nevertheless consistent with what might be expected on the grounds of
viscosity and crystal structures. We are therefore inclined to believe that they are real. The
reverse Monte Carlo method has demonstrated the advantage that it is potential independent.
Any potential based method would have to use a very complex potential in order to be able to
produce the same results.
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